The athlete that can build on more muscle mass over a aerodynamic frame will have the advantage.
In swimming, legendary Hawaiian champion Duke Kahanamoku set the world record in 1912 with a time of 61.6 seconds with a calculated slenderness of 7.88. Some 96 years later, Eamon Sullivan lowered the world mark to 47.05 seconds at a slenderness factor of 8.29.
As the athletes' slenderness factor has risen over the years, the winning times have dropped.
In 1929, Eddie Tolan's world-record 100 meter sprint of 10.4 seconds was achieved with a slenderness factor of 7.61. When Usain Bolt ran 9.69 seconds in the 2008 Olympics, his slenderness was also 8.29 while also being the tallest champion in history at 6-feet 5-inches.
Bolt puts his prediction to the test next month at the track and field world championships in Berlin. His main competition is Asafa Powell, the previous world record holder, who is shorter and has a slenderness factor of 7.85. My money is on the Lightning Bolt.
SHOOT: Intwisting.
During the same time, about 7/10 of a second have been shaved off of the 100-meter sprint while over 14 seconds have come off the 100-meter swim record.
World record sprinters have gained an average of 6.4 inches in height since 1900, while champion swimmers have shot up 4.5 inches, compared to the mere mortal average height gain of 1.9 inches.
At first glance, it may not make sense that bigger athletes would be faster. However, Jordan Charles, a recent engineering grad at Duke, plotted all of the world record holders in the 100 meter sprint and the 100 meter swim since 1900 against their height, weight and a measurement he called "slenderness."
For locomotion, a human needs to overcome two forces, gravity and friction. First, an athlete would need to lift his foot off the ground or keep his body at the water line without sinking. Second, air resistance for the sprinter and water resistance for the swimmer will limit speed.
|
No comments:
Post a Comment